Logo Search packages:      
Sourcecode: lcalc version File versions  Download package


// When MPFR is enabled and double is passed to a templated function
// The function should use precise(ttype) to make sure calculations run
// within the more precise type
#define precise(T) typename precise<T>::precise_type
00005 template<class T> struct precise { typedef T precise_type; };
00006 template<> struct precise<double> { typedef Double precise_type; };
00007 template<> struct precise<complex<double> > { typedef Complex precise_type; };
#ifdef USE_MPFR
template<> struct precise<long long> { typedef double precise_type; };
00011 template<> struct precise<long long> { typedef long long precise_type; };
//typedef precise<long long>::precise_type Long;
typedef long long Long;

// To aid conversion to int value
inline double to_double(const Double& x) {
#ifdef USE_MPFR
      return x.get_d();
      return x;
#ifdef USE_MPFR
inline double to_double(const double& x) { return x; }
//inline double to_double(const long double& x) { return x; }
inline double to_double(const int& x) { return x; }
inline double to_double(const long long& x) { return x; }
inline double to_double(const short& x) { return x; }
inline double to_double(const char& x) { return x; }
#define Int(x) (int)(to_double(x))
#define Long(x) (Long)(to_double(x))
#define double(x) (double)(to_double(x))

template<class T> inline int sn(T x)
 if (x>=0) return 1;
 else return -1;

const bool outputSeries=true;   // Whether to output the coefficients or just the answer

// Loop i from m to n
// Useful in tidying up most for loops
#define loop(i,m,n) for(typeof(m) i=(m); i!=(n); i++)

// A class for calculations involving polynomials of small degree
// Not efficient enough for huge polynomials
// Polynomial of fixed degree N-1 with coefficients over T
00054 template<class T=Complex> struct smallPoly {
      valarray<T> coeffs;
      typedef smallPoly<T> poly;
      int N;
      T zero;

      smallPoly(int N=0) {

      void resize(int N) {

      // Access a coefficient as a subscript
      T& operator[](int n) {
            return (n<0 ? zero : coeffs[n]);
      const T& operator[](int n) const {
            return (n<0 ? zero : coeffs[n]);

      // Multiply two polys together, truncating the result
      friend poly operator*(const poly& f, const poly& g) {
            poly result(max(f.N,g.N));
            loop(i,0,f.N) result[i]=0;
            double test;
            loop(i,0,f.N) loop(j,0,result.N-i) {
            return result;

      // Divide (in place) by (x-1/a) = (1-ax)/(-a) with a!=0
      void divideSpecial(T a) {
            loop(i,1,N) coeffs[i]+=coeffs[i-1]*a;
            coeffs*= -a;

      // Evaluate the polynomial at x
      template<class U> U operator()(U x) {
            U sum=coeffs[0];
            U cur=1;

            loop(i,1,N) {
            return sum;

      // Output to stdout
      friend ostream& operator<<(ostream& s, const poly p) {
            loop(i,0,p.N) s << (i ? " + " : "") << p[i] << "x^" << i;
            return s;
      // Arithmetic
      template<class U> poly& operator*=(const U& x) {
            return *this;
      template<class U> poly& operator/=(const U& x) {
            return *this;

Generated by  Doxygen 1.6.0   Back to index